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Synopsis 

Wiped-film reactors carrying out AA + B’B” type reversible polycondensations (where A, B ,  and 
B” are functional groups, with B’ and B” reacting with A a t  different rates) have been simulated. 
The governing mass balance equations have been solved for two transport models of this reactor 
(one by Auk and Mellichamp and the other by Amon and Denson) using a combination of finite 
difference and the Runge-Kutta methods. The increase in the number-average chain length pn 
of the polymer formed in the reactor is computed as a function of the various rate constants and the 
parameters characterizing the reactor. f in  is found to be most sensitive to the surface area of the 
film and to the temperature used, both for the equal reactivity as well as for the unequal reactivity 
cases. For the latter, the effect of the reactivity ratio for the forward rate constants is more significant 
than that of the equilibrium constants. Results of the two models are also compared under similar 
conditions and it is found that under equivalent conditions, the Amon-Denson model gives slightly 
higher pn than the Ault-Mellichamp model. 

INTRODUCTION 

A considerable amount of work has been done in the last decade on the simu- 
lation of step-growth polymerizations and has been reviewed recent1y.l Most 
of these studies have been confined to the study of isothermal polymerizations 
in sealed tubes, wherein functional groups are equally rea~t ive.”~ These are 
idealizations since two major deviations occur in a real reactor, namely, the 
violation of the equal reactivity hypothesis and the role of diffusion in removing 
the condensation product out of the reaction mass in order to give high molecular 
weight products. To account for the former, attention has been focussed recently 
on polycondensations with chain-length-dependent reactivities,4-6 with mono- 
mers AA + B’B” (functional group A reacting with B’ or B” at  different rates, 
called asymmetric monomers) and on AA + BB systerns7-l0 wherein the reactivity 
of A on a molecule of AA changes once the other A has reacted (induced asym- 
metry). Some work has also been done10-12 in the second category regarding 
the role of diffusion of the condensation product, and the effect of mass transfer 
in increasing the average molecular weight of the polymer formed in some ide- 
alized reactor geometries has been established. 

In real reactors, as the viscosity of the reaction mass increases at high degrees 
of polymerization, mixing as well as diffusion become difficult and the buildup 
of the condensation product concentration in the reaction-mass favors the reverse 
reaction, thereby curtailing further polymer chain growth. Various types of 
continuous film-forming reactors have been developed to enhance the removal 
of the volatile byproduct and so obtain higher molecular weight product of 
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Fig. 1. Wiped film reactor. 

commercial value. The most common is the wiped-film reactor, used extensively 
in the manufacture of PET. One model (henceforth referred to as model I) for 
such reactors has been presented by Amon and Denson.13 In this model, shown 
in Figure 1, a rotating blade applies a thin “film” of the reaction mass on the 
surface of a cylinder to which a high vacuum is applied. The reaction occurs 
primarily in the “bulk” while most of the condensation product is removed in 
the film. The film is continuously applied on the walls, and after a certain time 
it is scraped and mixed with the bulk. Mass balance equations are written for 
both the bulk and the film and lead finally to a set of coupled partial differential 
equations. These have been solved using a combination of the finite difference 
technique and the Runge-Kutta method for a whole range of operating variables 
to give the conversion of functional groups and the number average molecular 
weight of the polymer formed. The work of Amon and Denson has been cor- 
rected and extended14 to give the polydispersity index of the polymer formed 
also, using appropriate moment-closure approximations.l5,16 

Another mathematical model of the wiped-film reactor has been proposed by 
Ault and Mellichamp17 (referred to as model 11). In this model it is assumed 
that the entire reaction mass is applied as a thin film and there is no separate 
bulk as in model I. After a fixed time interval the entire film is well mixed (in- 
stantaneously) by means of the blade of the reactor and applied once again. This 
model thus has different axial mass balance equations than model I. The actual 
behavior of a wiped film reactor is expected to lie in between the results predicted 
by these two limiting models. 

In this paper we have considered these two models of the wiped-film reactor 
and have studied their performance for reversible polymerizations wherein 
functional groups are not equally reactive, in particular, AA + B’B’’ polycon- 
densations. The basic principle of operation in the reactor has been kept the 
same as in the earlier models. It is assumed in this work that only the conden- 
sation product diffuses through the reaction mass. This assumption has been 
extensively used by earlier workers,10J1J8 and, since the other species in the 
reaction mass usually are of much higher molecular weights, they are far less 
volatile. In fact, Nagasubramanian and Reimschuessell8 have found experi- 
mentally that the diffusivity of the monomer E-caprolactam through the reaction 
mass is almost a hundredth of that of water in nylon 6 polymerization. The 
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higher molecular weight products will also be physkally entangled with other 
molecules in the reaction mass, and will thus have even lower diffusivities than 
the monomer. 

The mass balance equations for model I consist of a set of partial differential 
equations for the film and a set of ordinary differential equations for the bulk. 
The finite-difference and the Runge-Kutta methods are used to solve these 
equations simultaneously, and the number average degree of polymerization is 
obtained as a function of the various rate constants as well as the reactor pa- 
rameters like residence time, film exposure time, mass transfer area, and the level 
of applied vacuum. In model 11, however, a set of partial differential equations 
has to be solved using the finite-difference technique, and Simpson’s rule is used 
to take care of the instantaneous mixing of the film. 

FORMULATION 

The study of the kinetics of polymerization of AA and B’B’’ type monomers 
is greatly simplified by working with the functional groups A, B’, and B” instead 
of dealing with the various molecular species present in the reaction mass. Both 
these representations are mathematically equivalent but the analysis in terms 
of functional groups can give the conversion of functional groups and the 
chain-length average only. In order to solve for higher moments of the chain 
length distribution, one must work with the individual molecular species and 
sum up the equations appropriately to give the various moments. Moment 
closure techniques are then required to solve the set of coupled equations ob- 
tained this way. Since there are only a few cases (e.g., nylon 6 polymerization 
with monofunctional acids) where the polydispersity index of the final polymer 
obtained is very different from the numerical value of 2, this restriction is rela- 
tively minor in importance. 

In terms of functional groups the kinetic scheme studied here may be repre- 
sented as 

where -C‘- and -C“- represent the reacted groups -AB‘- and -AB”-, 
respectively, which are different structurally and, therefore, differ in their 
reactivities. W is the condensation byproduct. It is also assumed here that the 
reaction rates, equilibrium constants, and physical properties, particularly the 
diffusivity of W in the reaction mass, are independent of chain length. Of these, 
the last assumption is particularly important in view of the fact that the diffu- 
sivity of W in the reaction mass is expected to be a function of its viscosity, at 
least in cases where the average chain length is not very high (at higher chain 
lengths, the diffusivity of W is determined by segmental motions of the polymeric 
molecules and becomes independent of chain lengthIg). The model presented 
herein can easily account for the variation of the diffusivity, but this has not been 
done in this work. 
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The rate of consumption, r ,  of the various functional groups by chemical re- 

(2a) 

(2b) 

(2c) 

( 2 4  

( 2 4  

(2f) 

action alone can be written as 

rA = -h1(-[A][B’] + [C’][W]/K1 - R[A][B”] + R[C”][W]/K2} 

TB’ = -hil-[A][B’I + [c’][w]/Ki} 
rB” = -kl(-R[A][B”] + R[C”][W]/K2} 

rc’ = hll[Al[B’l - ~C’l[W1/~11 
rc” = k$?[A][B”] - R[C”][W]/K2) 

rw = k 1Wl [B’l - [C’l [WIIKI + R [A] [B”] - R [C”] [WI/K21 
where [ ] represents the molar concentration of any species. 

Model I 

Using the rate expressions of eq. (21, mass balance equations may be written 
for the bulk of the reaction mixture (which is transported axially along the tu- 
bular reactor) as well as for the film (where the mixture is exposed to high vacuum 
in order to remove W). In the case of axial transport in the bulk, one considers 
a differential volume element shown in Figure 1 and the steady state mass balance 
equations are13 

-Q d [ W ] + r w A b  d x - i i w s  d x = O  (3f) 

where Ab is the cross-sectional area of the bulk, Q, the volumetric flow rate 
through the reactor, Ew (defined later) is the average flux of W over the film 
perimeter at a given axial position x ,  and s is the film surface area per unit length, 
or the perimeter. 

The amount of W diffusing out of the surface of the film can be obtained from 
the following set of mass balance equations for the film: 

-- - -rB” d[ B”] 
dt 

-- - rc,, d[C”] 
dt  
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where D is the diffusivity of W through the reaction mass and is assumed to be 
constant and t is the time. In writing eq. (4), it is assumed that the effect of 
curvature is negligible and the film can be represented as an infinite flat 
plate. 

The initial and boundary conditions used for the film are as follows: 
Initial Conditions for the Film: 

a t t  = 0 ,  y 2 0  

[A] = [A] I x  [B’] = [B’I 1 x [B”] = [B”] I x  (5) 

[C’l = [C’I I x  7 IC”1 = [C”I I x 7 [WI = [WI I x  

where [A] I x ,  . . . represent the concentrations of A, . . . in the bulk at axial position 
X .  

Boundary Conditions for the Film: 

at  t > 0, y = 0, [W] = [W], ( 6 4  

- 0  WI y = 6 ,  -- 
dY 

where 6 is the thickness of the film and [W], is the interfacial concentration of 
the condensation product. It may be mentioned that [W], is related by a ther- 
modynamic equilibrium relationship to the level of vacuum applied in the 
wiped-film reactor. In this study, [W], is assumed as a constant and has been 
treated as a parameter. The second boundary condition in eq. (6) represents 
the fact that the flux of W at  the impervious metal wall is zero. In writing eqs. 
(3) and (4) the contribution of mass transfer of W from the bulk has been ne- 
glected; so also the contribution of the polymerization in the film (other than 
in determining iiw) has been neglected, These are justified if the volume fraction 
of the reaction mass in the bulk is close to unity. 

The time-averaged rate of diffusion of W from the film can be written as13 

where T is the exposure time of the film. The use of eq. (7) for iiw leads to severe 
instabilities in calculations, since it involves numerical differentiation. However, 
Amon and Denson have reexpressed iiw in an alternate form which avoids this 
problem. A similar simplification is tried here for the unequal reactivity poly- 
merization of eq. (1). From eqs. (2) and (41, it is observed that 

D---- b d21w1 - rw = - ([W] + [A]) dy2 dt dt 
On integrating this equation with respect toy using the boundary condition (6b) 
and simplifying, one obtains 
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Equations (3), (4), and (9) represent a complete set of coupled ordinary (for the 
bulk) and partial (for the film) differential equations which must be solved si- 
multaneously in order to simulate the wiped-film reactor. 

The initial and boundary conditions to be used with the film equations are 
given in eqs. (5) and (6). The initial condition (at x = 0) for the bulk equations 
were written, assuming that the feed to the reactor is an equilibrium prepolymer 
from the previous reactor. This assumption will be fairly close to real-life sit- 
uations, specially in view of the findings of Ravindranath and Mashelkar20 that 
the diffusional resistance of W is negligible till the number average chain length 
reaches the value of about 20-30. Also, this helps in comparing our results with 
those of reversible polymerizations characterized by the equal reactivity of 
functional groups in wiped-film reactors as studied earlier.’J4 With the use of 
the stoichiometric relations, the conversion p of functional group A is related 
to the conversions p1 and p2 of functional groups B’ and B”, respectively, as 

for stoichiometric amounts of A, B’, and B” taken initially, i.e., [B’lo = [B”]O = 

At equilibrium (at the end of the previous reactor), the following relationship 
[A1 012. 

must be satisfied: 

Using the following equation for the number average chain length p n ,  

p n  = [Alo/[Al = 1/(1 - P )  (12) 

we obtain, finally, at equilibrium, 

-- [WI - ( p n  - 2)(K1+ Kz) + {F~R(KI + K d 2  - 4(pn - ~ ) ( K I  - Kd2)1’2 
“0 4 ~ n ( ~ n  - 1) 

- 

(13) 

In this equation, [W] is the equilibrium concentration of W (corresponding to 
the vacuum applied on the previous reactor), [A10 is the feed concentration of 
A for the previous reactor, and p n  is the corresponding equilibrium degree of 
polymerization. Equation (13) reduces to the expression used earlier, 

[W]/[A]o = l / ~ n  ( ~ n  - 1) (14) 

when K1 = 1, K2 = 1, and R = 1. The final equations for the initial values of the 
various dependent variables are given later in this paper in nondimensional 
form. 

Equations (2)-(9) are nondimensionalized using the following dimensionless 
variables: 
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where L is the length of the wiped film reactor and [A10 the concentration of A 
corresponding to the feed to the previous reactor (or the sum of the concentra- 
tions of both the reacted and unreacted A). 

In terms of these, the initial conditions for the bulk in the wiped film reactor 
are given by 
a t x  = O :  W* = 

-(Pn,o - ~ ) ( K I  + K2) + bi,0(K1 + K d 2  - 4(Pn,0  - 1)(K1 - K2)211’2 
~ P ~ , O ( P . , , O  - 1) 

(164 

where Pn,o is the number average chain length of the feed to the wiped-film re- 
actor and is chosen as a parameter (in real situations, W* at x = 0 will be the 
independent parameter instead of Pn,o, its value being determined by the vacuum 
applied in the previous reactor). 

The resulting equations are then solved numerically with the help of a com- 
bination of the fourth order Runge-Kutta and the explicit finite-difference 
t e c h n i q ~ e s . ~ l - ~ ~  In finite-difference form the film mass balance equations 
simplify to 

where the subscripts i,n indicate the ith location in the film at the time nA8. The 
symmetry boundary condition given by eq. 6(b) can be accounted for21 by as- 
suming Wb-l,n = Wb+,,, in eq. (17), where M is the number of finite-difference 
grid points into which the film is divided. 

In order to assure convergence, the following set of increments was used for 
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the dimensionless independent variables: 

(18) 
1 

150 
AT = -, A8 = 0.1, A[ = or 

A further reduction in the values of these increments did not lead to significant 
changes in the final results. The results were found to be extremely sensitive 
to the choice of A[ and As. Higher values of A[ than l/loO led to severe conver- 
gence problems while asymptotic results were attained only below A7 of about 
l/100. It may be mentioned here that Amon and Denson13 used a semi-implicit 
finite-difference technique to solve the film equations instead of the explicit fi- 
nite-difference method used here, which is mathematically simpler. Further, 
the computer program was run with K1 = KZ = R = 1 and other parameters as 
in Ref. 14, and the results were found to match those reported earlier, thus 
confirming that the program was free of errors. The computer time (on a DEC 
1090 system) taken for a typical run with the increments A7 = 1/150, A8 = 0.1, 
A t  = was approximately 13 min. 

Model I1 

In the mixing film model, the polymerization reactions have been assumed 
to occur only in the film and Ab is zero. Thus only the film mass balance equa- 
tions (17) need to be solved numerically using the finite-difference technique. 
At the end of a cycle, when 8 = 1, the entire film is mixed together and reapplied 
instantaneously. Thus the starting concentrations in the film at 8 = 0 (beginning 
of a cycle) are related to the conditions at  8 = 1 of the previous cycle by the fol- 
lowing mixing equations: 

where W*(~,T,J)N, . . . represent the dimensionless concentrations W*, . . . at time 
8 and position 7 in the film in the Nth cycle and W* (%)N,. . . are the spatial average 
values of W*, . * . at time 8 in the film in the Nth cycle. These equations have 
also been solved on the DEC 1090 system for several cycles using A7 = l/150 and 
A% = 0.1. The computer time for N = 100 cycles was 3 min. 
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RESULTS AND DISCUSSIONS 

Six nondimensional parameter, kl(LAb/Q)[A]o, klT[A]o, (sL/Q)(G/T), 
TD/d2, W;/W6 and pn,0, characterize the reactor system in the 
set of dimensionless equations for model I. Here, Wl is [W],/[A]o and W; is the 
nondimensional concentration of W in the feed and is given by eq. (16a). These 
parameters, along with the values of the rate parameters K1, K2, and R are suf- 
ficient to determine the dependent variables A*, B’*, B”*, C’*, C”*, W* and the 
number average chain length pn 1/A* as a function of the dimensionless axial 
location E in the reactor. 

In order to study the effect of various reactor design and kinetic parameters 
systematically, several computer runs were made using the following reference 
set of values for the parameters13J4: 

Reactor Design Parameters: 

hl(LAb/Q)[A]o = 2000, TD/d2 = 

klT[A]o = 2, 

(sL/Q)(d/T) = 1000, 

Wg/W; = 0 

pn,o = 50 
Rate Parameters: 

K I = l ,  K 2 = 1 ,  R = l  (20) 
The various parameters were varied one by one, keeping all others at these ref- 
erence values. 

The axial variation of pn for the reference set of parameters given in eq. (20) 
is shown in Figure 2. When R is unity, identical results are obtained for pn using 
either K I  = 0.5, K2 = 1, or K1 = 1, K2 = 0.5, etc. This is consistent with the 

1.91 1 

1.0 
0 0.2 0.4 0.6 oa 1.0 

3 
Fig. 2. Axial variation of K,,J/K,, ,O for model I. kl(LAb/Q)[A]o = 2000, klT[A]o = 2, (sL/Q)(6/T) 

= 1000, TD/6* = lo-*, Wf/W; = 0, K,Q = 50; rate parameters varied one-by-one about the following 
set of reference values: K1 = 1, K P  = 1, R = 1. 
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k, (2 )CAI, 

Fig. 3. Reactor efficiency vs. kl(LAb/Q)[A]o (-) and klT[A]o  ( - -  -) for model I. Values of pa- 
rameters not specified are given in eq. (20). 

symmetry associated with the reaction scheme between -A and -B‘ or between 
-A and -B” as shown in eq. (1). The increase in p,, with the rate parameters 
K1, KB,  and R are consistent with intuitive expectations since increasing the 
forward rate constants in the scheme shown in eq. (1) leads to more production 
of W and thus to higher removal of W by diffusion and higher chain lengths. It 
is interesting to observe that p,, is more affected by an increase in the value of 
R than by an increase in K1 or Kz, as can be observed by comparing curves P and 
Q in Figure 2.  It is also observed that for the case when K1 = 1, K Z  = 1, R = 1, 
the results on AA + B’B” polymerization match with earlier results1* on equal 
reactivity ARB polymerizations. 

Figure 3 shows the effect of varying the dimensionless residence time 
kl(LAbIQ)[A]o in the reactor and the dimensionless film exposure time, k1T[A]o 
on the reactor efficiency (defined as p,,,~/p,,,o). On increasing kl(LAbIQ) [A]o, 
p , , , ~ l p , , , ~  is observed to rise sharply to its asymptotic value, the asymptotic value 
again depending on the rate parameters-they being higher when the forward 
reactions are favored. It is observed that there is relatively little change in the 
value of p,,,~/p,,o as the residence time, LAbIQ in the reactor is increased. This 
is because the driving force for the mass transfer of W becomes very small as [W] 
approaches [W], in the reactor. It also illustrates the futility of increasing 
product molecular weights by increasing the length of the reactor. This con- 
clusion is further supported by the trend shown by the p n , ~ l p n , 0  vs. kl(LAbI 
Q )  [A10 plots for K1 = 5, R = 5 wherein more W is produced and there is a con- 
tinual rise in the reactor efficiency. The reactor efficiency is also found to in- 
crease greatly on varying kIT[A]o. This diagram illustrates the effect of varying 
the rate constant kl and does not indicate the influence of increasing T among 
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SL 6 
0 1  
-- 

Fig. 4. Reactor efficiency vs. (sL/Q)(6/T) (solid lines) and TD/P (dotted line) for model I. Values 
of parameters not specified are given in eq. (20). 

the variables since the parameters TD/J2  and (sL/Q)( 6/T) are simultaneously 
kept unchanged in Figure 3. Once again, higher reactor efficiencies are observed 
as the rate parameters are increased to favor the forward reactions in eq. (1). It 
may be mentioned that the reactor efficiency will reduce as T increases, keeping 
D and 6 fixed, indicating the usefulness of the rapid application and removal of 
the film. 

Figure 4 shows the effect of (sL/Q)(G/T) and TD/a2 on the reactor efficiency. 
Once again, neither of these two sets of graphs can give the effect of varying the 
film thickness directly, since the other parameters involving 6 are kept constant 
as these are varied. However, the graphs corresponding to (sL/Q)(G/T) represent 
the effect of the film perimeter s, and it is observed that the reactor efficiency 
increases as s increases, as expected intuitively, since more surface area is 
available for the removal of W. This effect is higher when the rate constants 
favor the forward reaction-the effect of increasing R being more substantial 
than that of increasing K1. The graphs corresponding to TD/a2 in Figure 4 can 
be interpreted as those representing the effect of the diffusivity D of W through 
the reaction mass. It is observed that the reactor efficiency is not very sensitive 
to TD/a2 when this parameter varies from about but beyond TD/a2 
of about the reactor efficiency increases very rapidly, specially when the 
rate parameters favor the forward reaction. This is consistent with our earlier 
explanation that for TD/a2 around the driving force for the mass transfer 
of W is relatively small. This effect is thus very similar to the asymptotic nature 
of the reactor efficiency vs. kl(LAb/Q)[A]o curves. For values of TD/62 above 
about it appears that these mass transfer limitations diminish in impor- 

to 
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1.01 I 1 

wf/w," 
Fig. 5. Effect of Wf/Wc on the reactor efficiency for model I. 

tance, and there is a very sharp increase in the reactor efficiency. It is found that 
the reactor efficiency vs. kl(LAb/Q)[A]o curves for these ranges of TD/62  also 
show an increasing trend in contrast to their sharp rise to an asymptotic value 
as in Figure 3 for lower values of TD/6 2. However, such ranges of TD/ij2 would 
probably not be physically meaningful. 

Figure 5 shows the effect of the degree of vacuum applied on the film. A 
lowering of the reactor efficiency has been found as Wf/wci is increased, specially 
when the latter is above about 10-l. A reduction in the vacuum level be!ow this 
level does not lead to significant improvements in the reactor efficiency and again 
illustrates the futility of applying much higher vacuum. A similar effect for the 
equal reactivity case was reported by Amon and Denson. I t  is observed from 
Figure 5, however, that the limiting useful value of W;*/W; depends on the rate 
parameters and, for unequal reactivity polycondensations, one can get sub- 
stantially higher reactor efficiencies by increasing the level of vacuum to below 
Wi/W; values of 10-1. 

Model I of the wiped-film reactor thus predicts the following two major 
qualitative effects: 

(a) There always arises a point of diminishing returns when one tries to get 
improvements in the product molecular weights by going to longer reactors or 
by applying higher vacuum. It is always more profitable to increase the surface 
area of the film (per unit flow rate of the reaction mass) or the temperature of 
the reactor (through k l )  to maximize the reactor efficiency. 
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Fig. 6. pn/pn,o as a function of the axial location n/N or r/L. (-) Model I1 using k l T [ A ] o  = 2, 
TD/fi2 = lop4, and N = 100; (---)model I using kl(LAb/Q)[A]o = 2000, klT[A]o  = 2, TD/fi2 = lop4, 
( sL/Q)(G/T)  = 100. pn,o = 50 and W:/W; = 0 for both cases. Rate parameters are unity unless 
specified otherwise. 

(b) The effect of the reactivity ratio R on the reactor efficiency is more pro- 
nounced than that of the equilibrium constants. 

The dimensionless reactor parameters associated with model 11, the mixing- 
film model17 of the wiped film reactor, are klT[A]o, TD/d2, W:/W& pn,0, and the 
total number of cycles N .  It is thus observed that there is one less independent 
parameter in this model than in model I and a good comparison of the two models 
is difficult. A rough idea of the conditions under which the two models are 
equivalent, may be obtained by discretizing the operation of model 11. In this 
model, an amount of material equal to QT is fed in time T .  We may imagine 
that all of this material is spread out instantaneously as a film of thickness 6, over 
a length x *. After time T ,  this film is mixed and moved forward by a distance 
x*, while another film of volume QT is applied at its original position, these steps 
occurring instantaneously. If the perimeter of the film is s, we can write 

sx*d = QT (21) 

which gives x *  as QTIsG. Thus, the number of contacts, N ,  in length L of the 
reactor is Llx* or LsGIQT. No independent equivalence relationship can be 
obtained relating k 1(LAbIQ) [A10 of model I to parameters associated with model 
11. However, as depicted in Figure 3, results of model I are insensitive to the 
value of kl(LAbIQ)[A]o and a reasonably high value of 2000 is used. 

In order to compare the two models under the above-mentioned equivalent 
conditions, the following set of parameter values were used to generate results 
for model 11: 
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klT[A]o = 2, W$/WG = 0 

TD/P = 10-4, pn,O = 50 

N = 100 

Higher values of N were not used because of the excessive computer times in- 
volved. Figure 6 shows the results for various values of the rate constants. 
Results for model I using the equivalent set of parameters: 

k1T[A]o = 2, TD/a2 = (sL/Q)(G/T) = 100 

kl(LAb/Q)[A]o = 2000, Wg/WG = 0, pn,o = 50 (23) 
are also shown for comparison by dotted lines. It is observed that slightly higher 
values of p n  are obtained for model I than for the mixing-film model. Since 
actual reactors are expected to lie in between these two limiting behaviors, and, 
since the results do not differ significantly, one may claim that either of the two 
models are good enough to predict the actual behavior. 

References 

1. S. K. Gupta and A. Kumar, Chem. Eng. Commun., to appear. 
2. P. J. Flory, Principles of Polymer Chemistry, 1st ed., Cornell University Press, Ithaca, N.Y., 

3. A. Kumar and S. K. Gupta, Fundamentals of Polymer Science and Engineering, 1st ed., Tata 

4. V. S. Nanda and S. C. Jain, J.  Chem. Phys., 49,1318 (1968). 
5. S. K. Gupta, N. L. Agarwal, P. Rajora, and A. Kumar, J.  Polym. Sci., Polym. Phys. Ed., 20, 

6. S. K. Gupta, P. Rajora, N. L. Agarwal, and A. Kumar, Polymer, 23,222 (1982). 
7. L. C. Case, J.  Polym. Sci., 29,455 (1958). 
8. K. S. Gandhi and S. V. Babu, AIChE J. ,  25,266 (1979). 
9. E. Ozizmer and G. Odian, J.  Polym. Sci., Polym. Chem. Ed., 18,1089 (1980). 

1953. 

McGraw-Hill, New Delhi, 1978. 

933 (1982). 

10. R. M. Secor, AIChE J. ,  15,861 (1969). 
11. S. K. Gupta, N. L. Agarwal, and A. Kumar, J.  Appl. Polym. Sci., 27,1217 (1982). 
12. S. K. Gupta, S. S. Rao, R. Agarwal, and A. Kumar, Ind. Chem. Eng., to appear. 
13. M. Amon and C. D. Denson, Ind. Eng. Chem. Fundam., 19,415 (1980). 
14. S. K. Gupta, A. Kumar, and A. K. Ghosh, Ind. Eng. Chem. Fundam., to appear. 
15. S. K. Gupta, A. Kumar, and K. K. Agarwal, J. Appl. Polym. Sci., 27,3089 (1982). 
16. A. Ramgopal, A. Kumar, and S. K. Gupta, Polym. Eng. Sci., to appear. 
17. J. W. Ault and D. A. Mellichamp, Chem. Eng. Sci., 27,1441 (1972). 
18. K. Nagasubramanian and H. K. Reimschuessel, J.  Appl. Polym. Sci., 17,1663 (1973). 
19. J. S. Vrentas and J. L. Dudas, AIChE J . ,  25, l  (1979). 
20. K. Ravindranath and R. A. Mashelkar, J.  Appl. Polym. Sci., to appear. 
21. H. S. Mickley, T. K. Sherwood, and C. E. Reed, Applied Mathematics in Chemical Engi- 

22. A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus, and L. B. Anderson, Principles of Unit 

23. B. Carnahan, H. A. Luther, and J. 0. Wilkes, Applied Numerical Methods, Wiley, New York, 

24. W. F. Ames, Numerical Methods for Partial Differential Equations, 2nd ed., Academic, New 

neering, 2nd ed., McGraw-Hill, New York, 1957. 

Operations, 2nd ed., Wiley, New York, 1980. 

1969. 

York, 1977. 

Received August 13,1982 
Accepted October 6,1982 


